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The bifurcation of liquid bridges 
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Details of the shape of the liquid bridge joining a nascent water drop to its parent 
body are presented for times before, after and a t  the instant of bifurcation when the 
drop is created and also when the secondary droplet is formed. After the instant of 
bifurcation there is ‘unbalanced’ surface tension which gives an impulse to the rest 
of the fluid causing strong surface deformations. The major point of this work is to 
draw attention to the strong up-down asymmetry a t  each bifurcation point. The 
geometric similarity at each bifurcation instant supports the conjecture that the flow 
converges to just one similarity solution of the type described by Keller & Miksis 
(1983) in which only surface tension and inertia are important. Features of the flow 
before and after bifurcation are discussed. 

1. Introduction 
We describe an exploratory study of the fluid motion associated with the breaking 

of a liquid bridge. This breaking most commonly occurs when drops form. The last 
thin connection with the parent body of liquid is the liquid bridge which parts to 
create two separate masses. We focus attention on the neighbourhood in space and 
time of the point a t  which this bifurcation occurs in low-viscosity liquid. Photographs 
are presented illustrating the formation of water drops. 

Drop formation and associated free surface phenomena such as splashes have been 
studied photographically for one hundred years. Particularly noteworthy con- 
tributors are Rayleigh (1891), Worthington (e.g. 1897, 1908) and Edgerton (e.g. 
Edgerton, Hauser & Tucker 1937). More recent examples include studies of drop 
formation from a liquid jet such as Goedde & Yuen (1970), and Chaudhary & 
Maxworthy (1980a, b) .  Marschall (1985) has useful photographs of drops in a 
liquid-liquid system. However, the majority of studies have tended to concentrate 
on the number, size and trajectory of drops formed in various circumstances. 

Theoretical study has followed a number of directions. Studies of the static 
stability of pendent drops (e.g. Pitts 1974) indicate when drops will form? as do 
studies of the stability of liquid cylinders. These latter have been carried further to 
clarify the evolution of this instability (e.g. Chaudhary & Redekopp 1980), but not 
all the way to bifurcation. Meseguer & Sanz (1985) develop a one-dimensional model 
for liquid-bridge dynamics and make comparison with experiments on neutrally 
buoyant bridges. For viscous flow Wilson (1988) gives a simple model of drippiqg, but 
more considerable notice has been given to the break-up of large drops into small 
drops by an outer viscous straining flow. Taylor (1932) drew attention to this type 
of flow. Recent work of Stone & Leal (1989) describes this drop bifurcation with a 
numerical model which gives a good simulation of experiments (Stone, Bentley & 
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FIGURE 1. Capillary forces on the tip of a conical region of fluid of length r and half-angle a. Total 
force due to surface tension is 2xrsinaT, yet the mass of fluid is i p r 3  sin2a cosa, so that as r+O 
the acceleration becomes singular like r-z.  

(b) 

FIGURE 2. A sketch of possible self-similar shapes (a) for flow approaching bifurcation, (b )  for 
flow after bifurcation. 

Leal 1986). However, the motion at bifurcation is too rapid and on too small a scale 
to model accurately. 

The only paper which is concerned with effectively inviscid motion close to 
bifurcation is Keller & Miksis (1983) : it  prompted the experiments described here. 
Keller & Miksis consider flow governed solely by surface tension and inertia in 
circumstances where no lengthscale is present. For example, cases where the 
geometry is fully specified by angles such as occurs if an initial condition is simply 
a cone or a wedge. Keller & Miksis (1983) argue that such flows are self-similar since 
if surface tension, T ,  and density p ,  are the only relevant dimensional quantities, 
then a lengthscale, (Tt2/p) i ,  and a velocity scale, (Tlpt);, can only be found by 
combining them with time t .  These scales indicate the nature of the velocity 
singularity which occurs a t  an initial time for conical geometry owing to surface 
tension forces being ‘unbalanced’ a t  the apex. See figure 1.  Keller & Miksis give 
computed solutions for the self-similar deformation of wedges of liquid. 

The relevance of such a model to any particular flow can be judged by introducing 
other physical properties. For example, kinematic viscosity, v, permits evaluation of 
a viscous lengthscale, L, = p v 2 / T .  For water a t  20 “C, L,  = 14 x lop9 m which spans 
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FIGURE 3. (a) Naive view of drop formation. (b )  Sketch of observed drop formation. 

only a few molecules. The similarity lengthscale equals L, when t = 1.9 x s and 
the similarity velocity is then 73 m 8-l. Additional comparison of this last figure with 
the velocity of sound suggests that compressibility is unimportant. Thus for low- 
viscosity liquids, like water, it appears that inviscid modelling with capillary forces 
is relevant. The dimensional argument applies equally to two fluids, i.e. liquid-gas or 
liquid-liquid systems, so that the only macroscopic parameters for these self-similar 
flows are surface tension, density ratio across the interface and geometrical angles 
and ratios. 

A self-similar model can describe bifurcation, not only for the flow after the 
bifurcation instant where two independent cones of liquid occur a t  t = 0, but also 
before bifurcation where the flow is approaching conical geometry as time approaches 
t = 0 from below. Figure 2 gives a sketch of the solutions that are envisaged. 

Irrotational flow is usually a good approximation for low-viscosity flow starting 
from rest. The singular rates of strain, O(t-'), inherent in the self-similar singularity 
are only likely to amplify vorticity that corresponds to a pre-existing swirl. The 
shears and rates of strain in much drop formation do not exceed m s-'/mm 
corresponding to a timescale of a millisecond. Although precise timing is not 
available for the photographs shown here, the local bifurcation events had an overall 
time span of about 100 ps. This supports the notion that larger-scale motions are 
unimportant and that the flow is irrotational and likely to be self-similar. The 
exceptional case of a flow with swirl suggests an interesting line of further study 
especially for weak swirl. 

A naive view of drop formation would give the classical 'tear drop' shape with 
bifurcation occurring at  the apex of a pair of cones, as sketched in figure 3. However, 
as our photographs show, this is not the case and for water drops forming in air the 
configuration is sketched in figure 3 (b ) .  The marked lack of up-down symmetry near 
the bifurcation point does not appear to have been remarked upon before. The same 
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FIGURE 4. (a) The initial necking as a drop forms. (b )  The stage at which necking has formed a 
columnar liquid bridge. 

local configuration also occurs a t  the moment of bifurcation of the secondary droplet 
and can be seen in numerous published photographs. Particularly good examples in 
a liquid-liquid system are shown by Marschall (1985). 

2. Experiment 
The set of photographs presented here are of water dripping from the end of a glass 

capillary tube of outer diameter 5.2 mm. The end of the tube provides a scale for the 
photographs. The water was supplied through a short flexible tube from a burette. 
The drops were dripping as slowly as possible in order to minimize initial motion in 
the pendent mass of water. 

To obtain clear photographs it was necessary to  use a short-duration flash. The 
flash used had a nomimal duration of 15 ps. It illuminated a white diffusing screen 
behind the drop. Photographs were taken with a 35 mm camera. 



The bifurcation of liquid bridges 29 

The initial motion of the pendent mass interrupted a light beam. A photo cell then 
sent a signal to a timing unit which provided a manually variable delay before 
triggering the flash. Thus all photographs are of different drops: time delays were 
successively increased. The experiment was in a dark room with the camera shutter 
open. This has led to a streak of light from the light beam appearing on the 
photographs. Unfortunately the timing device was insufficiently accurate at  the 
short time intervals required for precise relative times to be assigned to each 
photograph. The difference in delay time between the closer pairs of photographs is 
of the order 60 ps. In addition, we assume each drop was identical to its predecessor. 
It is likely that some of the apparent imprecision of the device may have been due 
to a scatter of perhaps 5 to 10 ps in the precise moment of bifurcation. A high-speed 
movie taken at 2000 frames per second, i.e. 500 ps intervals, proved quite inadequate 
to resolve the motion, but did provide a coarse control on the times quoted above. 

3. Description of bifurcation and related events 
The sequence of events is illustrated by the photographs in figures 4-9 which are 

more than eight times life size. This sequence can be divided into the following parts. 

3.1. Necking 

The initial phase of necking, figure 4 (a) ,  has a smoothly curved surface which gives 
way to an almost cylindrical columnar bridge between the pendent mass and the 
nascent drop. This intermediate stage can also be seen in photographs of jets 
breaking up into drops: the connecting cylinder is described as a 'ligament' by 
Rayleigh (1891). Progress to this columnar stage is relatively slow with a timescale 
much greater than a millisecond and the gravity-induced straining is clearly 
important. 

The final necking stage, from figure 4 ( b )  to figure 5 (a) ,  is much shorter with a total 
time to bifurcation of around 1 ms and with the ultimate contraction where we 
expect a similarity solution to be relevant taking little more than 100 ps. In this 
stage we presume surface tension dominates the mechanics. 

3.2. Bifurcation of the main drop 

Figure 5 ( b )  shows the instant of bifurcation. The sharp cone on the upper side of the 
bifurcation point has a half-angle of 9" and blends smoothly with the remaining 
columnar bridge. On the lower side of the bifurcation point the drop that is formed 
has a near-spherical shape. I ts  horizontal diameter is 0.89 of the vertical diameter. 
Thus we see that close to the bifurcation point there is conical symmetry with a sharp 
cone touching the smooth surface of the drop which in an appropriately small 
neighbourhood is equivalent to its tangent plane. In this particular case 0.1 mm is an 
appropriate lengthscale for this region. 

3.3. Recoil 

Immediately after drop separation the unbalanced surface tension rapidly accelerates 
liquid in both water bodies. The high initial acceleration, which is singular in the 
inviscid self-similar model, acts almost like an impact. A round knob forms a t  the tip 
of the cone, growing in size without apparent change of shape as might be expected 
from a similarity solution. Figure 6 (a)  illustrates this stage, but close examination of 
the negative of figure 5 ( b )  reveals, near the limit of resolution, that the tip has a 
similar shape. 
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FIGURE 5. The bifurcation of drop from the columnar liquid bridge: (a )  just before, ( b )  at 
bifurcation. 

The effect on the drop is less clear in these photographs. However, other 
photographs show recoil occurring with a dimple appearing as the ‘release of tension ’ 
acts like a point impulse. Later photographs of this series clearly show an apparent 
flattening of the top of the drop which is in fact the rim of a depression in its surface. 
The flow visualization experiments of Marschall (1985) show clearly that in his 
liquid-liquid drop-formation experiment a ring vortex forms within the drop in 
response to the recoil. 

3.4. Wave generation 

Once the recoil effects propagate up the conical region onto the cylindrical remnant 
of the liquid bridge much of the original potential energy in the surface of the point 
cone is converted into wave motion. The illustration in figure 6 ( b )  shows small- 
amplitude waves, which propagate ahead of the disturbance like any other capillary 
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FIGURE 6. (a) The recoil just after bifurcation. (6) Waves propagating up the column generated 
by the recoil from bifurcation. 

ripples. These are not the growing waves which arise from the instability of a liquid 
cylinder, but shorter propagating waves. 

The cylinder is still shortening so that more energy goes into the wave motion. The 
knob a t  the tip grows in size, as may be seen in figure 7(a), and the waves become 
much steeper. As the figure shows, their troughs become deeper and the crests more 
rounded, in many ways similar to Crapper’s (1957) solution for large-amplitude two- 
dimensional capillary waves. These waves are better thought of as axisymmetric 
versions of symmetric waves on thin sheets, for which large-amplitude solutions are 
given by Kinnersley (1976, see also Hogan 1986). Although such axisymmetric 
solutions have yet to  be analysed i t  is clear that the steepest waves will have very 
large curvature in the troughs and are likely to break by touching and trapping a 
toroidal air bubble. Breaking leads to strong shearing motions which act to dissipate 
the energy. Our observations made on such waves on fluid jets indicate that they are 
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FIQURE 7 .  Bifurcation of the secondary droplet from the parent body of water: (a )  just before, 
(6) a t  bifurcation. 

unlikely to cause formation of further drops, except for those extremely small drops 
that may form from thin liquid films as trapped bubbles burst. 

3.5. Secondary necking and bifurcation 
For this particular experimental configuration a secondary drop forms. The necking 
and bifurcation can be seen in figure 7 to be almost identical with the initial 
bifurcation. When large transparent versions of photographs of each bifurcation 
point are overlaid the overlap of profiles is remarkably close even at a distance from 
the bifurcation point. 

3.6. Final  phase of motion 
Recoil from the secondary bifurcation has a brief self-similar stage which is virtually 
over in figure 8 ( a ) .  The brief duration of the self-similar stage is due to waves 
propagating from the first bifurcation. The waves generated by the secondary recoil 
mingle with those from the first bifurcation and it is a t  this stage that the experiment 
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FIGURE 8. (a) Just after bifurcation of the secondary droplet. ( b )  Large-amplitude waves on 
secondary droplet. 

fails to be entirely repeatable. A range of photographs have been obtained, usually 
showing three or four major waves on the droplet. Examples are shown in figures 
8 ( b ) ,  9 ( a )  and 9 ( b ) .  Eventually the droplet contracts towards a spherical shape with 
wave breaking contributing to dissipation of the excess encrgy. For example, thc linc 
around the lower part of the secondary drop in figure 9(6) probably corresponds to 
a broken wave. 

In  the photographs of the final stage the strong flattening of the top of the drop 
and the base of the remaining pendent liquid show continuing effects of recoil. On a 
longer timescale, these bodies of water oscillate owing to this disturbance. 

4. Discussion 
One experimental example has been presented here, which immediately raises the 

question, ‘How typical is i t  1 ’ Other studies of drops, ment,ioned in the introduction, 
mostly reproduce photographs at near life size and thus many of the details seen here 
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FIGURE 9. Further examples of large-amplitude waves on secondary droplets. Kote the line in (b )  
where a large-amplitude waves may have closed over a toroidal bubble. The flattening of the drop 
and the remaining pendent mass of liquid is also clear. 

are not clear. However, the overall pattern appears to be reproduced. Most studies 
are for the break-up of a jet. The incipient drops are connected by a thin bridge which 
is sometimes cylindrical and sometimes bulges when a more substantial secondary 
drop occurs. Bifurcations occur a t  the ends of these bridges and show the same strong 
asymmetry along the axis of rotational symmetry. So far, we have found no 
photographs of symmetric bifurcation of liquid bridges in air. All these photographs, 
including a number of liquid-liquid systems, indicate the same strongly asymmetric 
geometry a t  bifurcation as is found here. This is despite an initial necking phase, 
which appears to have appreciable updown symmetry as seen in figure 4(n) .  

These experiments suggest that not only is bifurcation described by a similarity 
solution of the class proposed by Keller & Miksis (1983) but that  one particular 
solution, the one seen at both ends of the columnar bridge in this example, is selected. 
This solution appears to have a large ‘domain of attraction’ and this raises the 
question of how it might be identified mathematically. 
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FIGURE 10. Formation of an air bubble in water. Multiple flashes of a stroboscope.were used to 
illuminate this photograph. 

The position of bifurcations, a t  each end of the columnar bridge, hints that a 
sufficiently strong asymmetry must first be created before bifurcation goes to 
completion. In  addition a mathematical solution must have suitable asymptotic 
conditions a t  large distances from the bifurcation point. For an initial wedge these 
are discussed briefly and incompletely by Keller & Miksis (1983). Further study of 
this case by Lawrie (1989) shows that the asymptotic form depends strongly on the 
angle of the wedge, with either wavy or algebraic terms dominating. 
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FIGURE 11. Drop formation with ethanol. 

Cones are different, except for the planar special case with half angle t x ,  since the 
far field cannot sustain a zero-flow first approximation. Preliminary studies indicate 
that source-like flows, i.e. velocity potential inversely proportional to distance, 
provide a suitable and easily understood far field. In  addition wave terms must be 
expected. For times, t < 0, the waves are converging on the bifurcation point. This 
property of a ‘ wavy ’ similarity solution appears to contradict causality. How can 
waves be generated with precisely the correct behaviour to converge on a future 
point in space-time ? The natural corollary of this observation is that any solution 
describing the approach to bifurcation must be ‘non-wavy ’. This has the implication 
that there may only be a small number of possible non-wavy similarity solutions. 
They may be thought of as eigenfunctions with the cone angles on each side of the 
bifurcation point taking the place of the eigenvalue. That is if (a ,  ,8) are the two cone 
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FIGURE 12. Drop formBtion in the splash arising from a drop of milk falling into a thin layer of 
milk (courtesy of Harold Edgerton). 

angles then only certain 2 vectors, (ai, pi) give 'non-wavy ' solutions, e.g. figures 5 ( b )  
and 7 ( b )  correspond to values of approximately (go", 9") and (go, 90"). 

The above discussion has assumed the dominance of surface tension, but other 
factors which can influence bifurcation should be considered. One dominant factor 
which appears in a self-similarity formulation of the problem is the density ratio. To 
shed a little light on this parameter a brief experiment was made with air bubbles. 
A stream of bubbles forming at the mouth of a tube were photographed with 
stroboscopic illumination. The moment of bifurcation proved very hard to catch, but 
the photograph in figure 10 taken with four successive flashes shows that bifurcation 
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in this case is more nearly symmetrical. However, measurement of an enlargement 
gives a pair of cone angles (34O, 42’) which are not equal. A large field of view is shown 
in figure 10 to include the previous bubble which shows the strong deformation which 
arises from the recoil at bifurcation. Experiments with different liquids showed very 
similar behaviour. For example, ethanol has a surface tension 30 % that of water, yet 
the only significant differences are a longer column and a drop of about half the 
diameter of a water drop, see figure 11. Edgerton’s photographs of milk drops in 
McDonald (1954) also indicate very similar behaviour. 

Gravity initiates drop formation in this case. It could continue to influence the 
flow either directly or through the overall rate of strain of the drop motion. The 
timescale of bifurcation, 7, is O( 100 ps). The corresponding dimensionless ratio giving 
the importance of gravity relative to surface tension is g ( ~ ~ p / T ) i  x The overall 
rate of strain, A ,  due to the motion of the drop is about 20 s-l giving A7 x 2 x 
Both of these dimensionless numbers are sufficiently small that we do not expect 
gravity or the rate of strain to affect flow close to bifurcation. Both viscosity and 
compressibility are discussed in the introduction. 

5.  Conclusion 
The photographs of drops as they drip presented here were taken in response to 

Keller & Miksis (1983) suggestion that flow near bifurcation may be described by self- 
similar solutions. The photographs give some support to that view, but in addition 
lead to the hypothesis that only particular self-similar solutions are selected by the 
dynamical evolution. It is suggested that this is because the approach to bifurcation 
cannot support waves which are approaching the bifurcation point in a self-similar 
manner. Since the self-similar flows have singular velocities, etc. a t  the instant of 
bifurcation, there may be some interest in studying the effect of such extreme 
conditions on fluid properties, on material dissolved or suspended in the liquid and 
on electrical properties such as charge separation. Another notable feature, which 
appears to be common to other examples of drop creation is the development of a 
thin bridge, columnar in this case. This appears to govern the location of bifurcations 
a t  the junctions of the bridge with the larger liquid masses. 

Large-amplitude surface waves are seen on the secondary droplet and its 
precursor. These appear to be consistent with the properties to be expected by 
analogy with two-dimensional solutions. 

Finally, in figure 12 another example is presented where drop formation comes 
after narrow liquid bridges break at their ends with sharp points : the ‘coronet ’ of 
splash plus drops that occurs after a drop falls onto a thin layer of liquid. 

The assistance of Dr M. E. R. Walford in supervising the experiments, and of the 
United Kingdom Science and Engineering Research Council in providing support to 
initiate theoretical study of these experiments are acknowledged. 
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